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Decay of quasi-bounded classical Hamiltonian systems 
populated by scattering experiments 
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Ciudad Universitsria, 1428, Buenos Aims, Argentina 

Received 1 July 1994. in final form 15 February 1995 

Abstract. We study numerically the decay of a Hamiltonian system whose transient bounded 
dynamics is fully chaotic but not necessarily fully hyperbolic when the phase space is initially 
populated by scattering experiments. We show that parabolic subseur included in the trapped 
orbits set are related to an algebraic tail corresponding to long times. The characteristic exponent 
of such a tail and that corresponding to the bil of the decay from the equilibrium population 
differ by one. This fact, already observed in other non-hyperbolic system, is related to internal 
distributions that characterize the intemal dynamics af the system 

1. Intmduction 

A survey of decay events and scattering processes in complex systems gives valuable 
information about them. As remarked in a recent work [I] both experiments are closely 
related. Thus in the case of Hamiltonian systems the properties that reveal themselves in 
temporal decay laws and time delay distributions are determined by the characteristics of 
the invariant sets of trapped orbits. 

In this work we study the scattering events on a potential related to Sinai's billiard (it 
is alo called Sinai's well) model [2]. We consider independent point particles of unit mass 
in the two-dimensional potential V ( x ,  y ) :  

1" 0 ~ . if a/2  < 1x1 or a /2  < IyI 
where x , y  are Cartesian coordinates and R < a/2. Let us remark that unlike other 
extensively studied non-integrable billiard systems, where the connection between the 
extemal and internal regions is provided by holes in rigid boundaries [3,4], in the present 
system the total energy E is a relevant parameter. In this sense, our system can be related to 
those in 151, where the circular billiard with a hole in the boundary which can be permeable 
according to the total energy of the particle is studied. We will consider here particles with 
fixed E such that 0 E .  Thus, the particles have the total energy to cover all the plane. 
However, particles inside the well stay @ere, their Cartesian components vi, i E X, y of the 
velocity 1) are such that 

if x Z + y 2  < R2 
if 1x1 < a/2, IyI c a /2  and x 2  + y 2  > R2 V ( x ,  y )  = -VO 
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when they reach the square boundary. We call this motion quasi-bounded. 
In the following we will fix U (the~side of the square-well) as a unit of length. Provided 

m = 1, U/,/- has units of time, hence we can take it as a unit of time such 
that the only dependence on the total energy E is condition (1.1). Thus, without Ioss of 
generality we can take 1211 = 1 inside the well. In this way elapsed time and length of the 
corresponding trajectory on the configuration space are equivalent. 

In previous works [6,71 we have studied the decay of Sinai's well from the 
microcanonical population (in the following equilibrium population) and we have related 
the decay law to internal distributions that characterize the well's internal dynamics. The 
invariant set of trapped orbits of the present problem is fully hyperbolic, or it includes 
non-hyperbolic subsets (parabolic) according to the value of R,  the radius of the central 
scatterer. In 161 we show that the fully hyperbolic character of the invariant trapped orbits 
is related to a purely exponential decay law while the existence of parabolic trapped orbits 
leads to a crossover between exponential decay and an algebraic decay. It is evident, from 
relation (l.l), that dynamics with E t VO leads to &im t rr/4 so, in such a ease, there are 
no trapped parabolic periodic orbits (periodic orbits that miss the central scatterer and fulfil 
condition (1.1)) no matter what the value of R. For this reason we will consider particles 
with fixed E such that 0 -= E 4 VO. 

In this work we are interested in the global consequences on the population temporal 
laws for scattering experiments when parabolic subsets are included in the trapped set. 

2. The time delay 

The existence of non-hyperbolic subsets makes itself evident in the typical observables for 
scattering events such as the deflection function or the time delay as a function of the impact 
parameter p for a given (fixed) incident angle yj [8,9]. 

The scattering processes can be understood as follows. When the incident projectile 
hits the central scatterer (first collision) its velocity could be re-orientated in such a way 
that condition (1.1) holds. In this case the particle remains in the well, rebounding with the 
square boundary and the central scatterer until a final bounce with the central scatterer could 
re-orientate the velocity such that condition (1.1) is not fulfilled and the particle leaves the 
well. Between the first and final collision the motion is quasi-bounded. We can distinguish 
two cases. The first corresponds to R z R, = fi/4 and all the trapped orbits involve 
at least one additional collision with the central scatterer, that is they are hyperbolic. The 
internal dynamics are dominated by collisions with the central scatterer so we have fully 
hyperbolic irregular scattering. In this case the number of internal reflections on the square 
boundary between two collisions with the central scatterer cannot exceed three, so the time 
delay increases according to the number of collisions with central scatterer R. Figure I(a) 
shows a representative orbit. In such a case we will observe the characteristic behaviour in 
the time-delay function related to the non-integer fractal dimension of the trapped set [lo]. 
Figure Z(u) shows this hyperbolic time delay for R = 0.38 and y = r/4. We could see the 
self-similarity mentioned above by expanding the horizontal scale ( p )  to improve resolution. 
In this case the values of the ordinate ( T )  corresponding to similar regular segments (the 
flat lines) increase with the number of hits n, as we have previously remarked. 

The second case corresponds to R < R, and where there is a subset of parabolic 
trapped periodic orbits that miss the central scatterer included in the invariant trapped set 
(they involve only internal reflections on the square boundary). As a consequence, for 
some intervals of impact parameter p between two collisions with the central scatterer there 
could be internal motion dominated by reflections on the square boundary. Figure I(b) 

A J Fendrik and M J Sdnchez 



Decay of quasi-bounded classical~Hamiltonian systems 4231 

Figure 1. WO orbits of scattering experiments. (a)  R =- Re The set of periodic trapped orbits 
i s  fully hyperbolic. The intemal motion is sketched by callisions with the central scatterer. (b) 
R c R,. The set of periodic trapped orbits includes parabolic subsets. There can be intemal 
motion characterized by reflections in the quare boundmy. 

P P 

Figure 2. Log-linear plot of time delay r against impact parameter p corresponding CO a trapped 
set: (a) fully hyperbolic; (b) including parabolic subsets. 

shows a representative orbit. Therefore, the time delay function increases according to 
the number of intemal reflections on the square boundary between two collisions with the 
central scatterer, in addition to the number of collisions with the central scatterer n. This 
fact originates a regular background over which the hyperbolic time delay is mounted. 
Figure 2(6) shows this situation. The background can be analytically determined and its 
origin becomes clearer using the extended version of the system (square ordered Lorentz 
gas) [ 11-13] where parabolic orbits correspond to channels between the scatterering centres 
(see appendix A). 
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3. The decay 

As already pointed out in [l], the decay and the scattering events for a fully chaotic system 
(that is a system that does not have regular islands) differ in the initial population of the 
phase space. The first problem assumes that the system is fully bounded at the beginning 
(i.e. the well behaves like a billiard, in the present problem the Sinai billiard, such that 
the particles are fully confined at the beginning) and the decay starts from the statistically 
stationary population (microcanonical) when particles are allowed to escape 161. In the 
scattering experiments, the initial population of the phase space depends on the characteristic 
of the incident beam. This beam leads to a well-localized population in the phase space, 
generally in a subset whose dimension is smaller than the dimension of the energy shell. 
Therefore, we can modify the formalism of [6] to relate the scattering decay law to the 
internal dynamics and we can test some results obtained from the study of the decay in [6] 
by employing them in the scattering calculations. 

We summarize the results derived in [6] that allow us to relate the decay from the 
equilibrium population to the internal dynamics: 

A J Fendrik and M J S6nchez 

where &(s) = L[Q(t)] means the Laplace transform and 

Q(t )  = 1 - N ( t ) / N o .  (3.2) 

Here N ( t ) / N ,  is the fraction of particles present in the well at time t (that is the decay law) 
and (see [6]) 

1 1 
w = -4 arcsin 

7c 
(3.3) 

is the probability that one particle leaves the well after one bounce with the central scatterer. 
To obtain (3.1), we crudely assume that the velocity antocorrelation goes to zero after one 
collision with the central scatterer. The distributions g&) dr and fe(t) dt are the fraction of 
particles whose first collision with the central scatterer occurs between t and t + dt and the 
fraction of particles whose time between two successive collisions with the central scatterer 
is between t and t fdf  respectively. g&) and f ( t )  correspond to equilibrium (in the sense 
that was pointed out at the beginning of the present section) and they are related by the 
condition 

(3.4) 

which was proved in [6]. Moreover, in 161 it was shown that ge(t) with finite horizon, that 
is its decreasing is exponential or faster, leads to an exponential decay of the remaining 
population N(t ) /No.  Otherwise (algebraic decreasing) the decay shows a crossover from 
exponential to algebraic behaviour for long times. 

As we have already said, for this work (scattering events) g(t)  is arbitrary, depending 
on the particular incident beam, we call it gp(f) and condition (3.4) does not hold. Here we 
will consider a uniform parallel beam of point particles whose incoming velocity subtends 
a fixed angle yi with the normal direction corresponding to one side of the square well (see 
figure 3). We will only consider the incident particles that bounce with the central scatterer 
because if they miss it, they leave the well by the opposite side. Such a beam corresponds 
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Figure 3. Sinai’s well potential, the beam (arrows), the region uniformly populated (thick line) 
by the beam and angles %yr. 

to a uniform population of particles on a segment of length 2R/cos yr on the side of the 
square well whose velocity subtends an angle 

sin n 
4fiTKF‘ yr = arcsin (3.5) 

The resulting distribution gp(t) is like apulse centred in ro = (1/(2cosy,) - nRj4) and 
width R(1+ tany,).  for the sake of simplicity, we ignore the details of g, keeping only 
the relevant features (namely the finite horizon and the temporal localization) and taking 

gp(0 = - 50). (3.6) 
Alternatively, as the collisions with the central scatterer are the mechanism used to reach 
equilibrium we assume, as in [6] for the derivation of relation (3.1), that after a collision 
the velocity autocomelation function goes to zero, that is statistical loss of memory on the 
initial population occurs so that the distribution f ( t )  must correspond to the equilibrium 
f e ( t ) .  This assumption will be strongly justified by our final results. Therefore, the modified 
version of relation (3.1) is 

In the following we calculate the rate 

(3.7) 

where Q p ( t )  = L-l[Qp(s)], using (3.7) for the, scattering on a potential whose trapped 
set includes only one parabolic subset related to the non-isolated parabolic periodic orbits 
characterized by lu,l/luyl = 1. That is Z / l O  e R c &/4. In this case we know that 
(see [61) 

In expression (3.9) 

A ( R ) E c x  I - -  ( ;,4)B 
(3.10) 
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with ,6 = 1.4776 and a = 0.2741, 

A J Fendrik and M J Srinchez 

2R 
(1 - nR2) 

(To)-' = 

and 

(3.11) 

(3.12) 

with <(2) = x,"I?I/n*. 
The resulting Q&) is 

W exp (-res) 
s w - (1 - w)[ l -  exp (sTo)l[exp (+To) + A ( R )  x,"zFexp (-nsG)/n2] Qp@) = - - 

(3.13) 

which depends on R (through TO, TO and A(R)) ,  E (through w) and (through ro). The 
latter dependence appears as a temporal translation that is irrelevant for f >> so. We stress 
that expression (3.13) is quite determined, that is, it does not have free parameters because 
we use those that were established in [6] for the decay. 

= n/4 by 
numerical simulation and by inverse transformation of (3.13). For the numerical simulation 
calculation we consider lo7 particles initially uniformly distributed on a segment of length 
2R/  cos yr belonging to one side (see, figure 3) whose unity velocity subtends an angle yr 
with the normal to the side given by (3.5). Figures 4(n) and (b) shows the results. There 
we can observe a satisfactory fit between both calculations. At fist  there is an exponential 
decay relating the population of asymptotic conditions to the hyperbolic trapped subset 
(see figure 4(b)). Later there is a power behaviour relating the population of asymptotic 
conditions to the parabolic subset Such algebraic behaviour for the tail corresponding to 
long times is - l / t ' s  with a* = 2. Thus taking account the fact that the tail for the decay 
problem from the equilibrium population is - l/t (see [6]), we conclude 

(3.14) 

Actually, relation (3.14) can be seen as a consequence of (3.4) together with (3.1) and 

We calculate the rate N ( f ) / N o  for R = 0.23, energy E = Vo/ZO and 

a* - at = 1 

as according to [I]. 

(3.7). For the decay from the equilibrium, the leading term of (3.1) gives 

1 l'&W 

g,(t')dt'- 1 g,(f')dt' . (3.15) 

As was shown in [6], for long times t ,  g&) - I/?, so Q(t)  M ( l - l / t )  and N( t ) /No  M I / t .  
Alternatively, for the decay from the population by scattering experiments, the leading term 
of (3.7), taking into account (3.4), results in 

Q & ) - w ( l - w )  fe(t'-ro)dt' 

U: t'=t 
Q ( t )  - w 1'" g.(f') dt' = w 

*'=O 

1'=9, 

(3.16) 

where fe(t) - I/ t3 for long times. Therefore, Q ( t )  M (1 - I/?), N( t ) /No  M l / tZ and 
(3.14) holds. The difference between the exponents given by (3.14) was also observed and 
explained in [5] for the case of a system whose internal dynamics is purely regular. 

1 1'=m 

f&' - ro) dt' - 1 f ( t '  - dt' 

['=' 

= w(l  - w)( l,y 
I'=t 

- 
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(a )  ( 6 )  

Figure 4. ( U )  Log-log plot of the remaining population inside the well N(t ) /No  against f .  The 
broken curve corresponds to that calculated using (3.13) while the full curve corresponds to the 
exact calculation. We have also drawn the straight line of slope WO to clarify the characteristic 
exponent of the algebraic long-time tail of the decay law. (6) Log-linear plot of N(t ) /No  
against f to display the exponential behaviour for shon limes in the actual decay law. 

4. Summary and conclusions 

We have shown how a parabolic subset of trapped orbits modifies the time delay pattern 
in an irregular scattering process. The parabolic subset provides a regular background over 
which the hyperbolic pattern is seen. 

We have also established that the existence of a parabolic subset leads to an algebraic 
decay law for long times - l/t2 when the system is populated by scattering experiments. 
The characteristic exponent differs by one from that corresponding to decay from the 
equilibrium population. 

As we have mentioned before, to derive expressions (3.1) and (3.7) we assume that 
the loss of memory in the direction of velocities occurs after one collision with the central 
scatterer. This fact and the results displayed in figure 4 suggest that the main difference 
between the decay from the equilibrium population and the decay from the population by 
scattering is that the first is dominated by the loss of~memory in the direction of velocities 
from the equilibrium distribution. This loss of memory is related to the distribution g&) 
that gives the fraction of particles whose first collision with the central scatterer occurs 
between t and t + dt. The decay process in the scattering experiment is dominated by the 
distribution f e ( t ) ,  that is, following (3.4). the temporal rate of the memory loss. 

To finish, we remark that the equilibrium distributions g&) with finite. horizon (i.e. 
exponentially decreasing or faster) in (3.1) lead to an exponential decay from the equilibrium 
population as was shown in [6]. According to relation (3.4) the corresponding distributions 
f&) will have a finite horizon, so, following (3.7), the decay from the population by our 
beam will also be exponential when R >~ &/4. 

Appendix A. 

This appendix is devoted to explaining the reguIar background of the time delay function 
when there are parabolic trapped orbits. Let us consider that the projectile has an impact 
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parameter p such that after colliding with the central scatterer its intemal dynamics is non- 
hyperbolic until the final collision, as figure I(u) shows. Because the intemal velocity is 
constant, the time delay will be the length L of the intemal trajectory. To evaluate this as 
a function of the impact parameter it is convenient to use an extended version of Sinai's 
well, namely the square ordered Lorentz gas. The length L will be determined by the ratio 
between the width of the channel S and the shift in the direction of the velocity with respect 
to the direction of the channel after the first bounce . Here we will determine L for the 
channel that corresponds to parabolic orbits characterized by the ratio uy/u, = f l ,  which 
has directions +n/4 and S = (&/2 - 2R). 

A J Fendrik and M J Srinchez 

Figure Al. Scattering experiments in Ihe extended version of Sinai's well. fi is the incidence 
angle, p is the impact parameter. (xo. yo) is the point of the hit with the tend scatterer, a, is 
the w l e  between the velocity after the hit and the x axis. 

Firstly, we determine the point (xo,  yo) where the projectile hits the cenhal scatterer as 
a function of the impact parameter p and the angle yi (see figure Al): 

J(m2 + 1)R2 - b2 - mb 
1+m2 XQ = yo = mxo - b (-4.1) 

where 

1 1 .p - 1/2(cos M - sin').;) 
2 2 sin M 

b = - -m (-- 
We then evaluate the CY,?, corresponding to the direction of the velocity after the bounce: 

To finish, we find the shift of CY, with respect to the direction of the channel; in the present 
case (n/4 - q). For projectiles in the channels, this angle is much smaller than one, 
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Figure A2. (a) A piece of the &*delay function corresponding to a region of the impact 
parameters such that the internal motion is dominated by the parabolic subset of trapped orbits 
+/a = 1. (6) The regular background predicted by (A.6) (see the tent) for R = 0.05, fi = rr14 
and VoIE = 20. 

therefore 

thus, 

Figure A2(a) shows a part of the actual time delay function corresponding to a region of 
the impact parameters such that the internal motion is dominated by the parabolic subset of 
trapped orbits uy/ux = 1. Figure A2(b) shows the regular background predicted by (A.6) 
for R = 0.05, 
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